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Abstract. We investigate the statistical equilibrium properties of a system of classical particles interacting
via Newtonian gravity, enclosed in a three-dimensional spherical volume. Within a mean-field approxi-
mation, we derive an equation for the density profiles maximizing the microcanonical entropy and solve
it numerically. At low angular momenta, i.e. for a slowly rotating system, the well-known gravitational
collapse “transition” is recovered. At higher angular momenta, instead, rotational symmetry can sponta-
neously break down giving rise to more complex equilibrium configurations, such as double-clusters (“dou-
ble stars”). We analyze the thermodynamics of the system and the stability of the different equilibrium
configurations against rotational symmetry breaking, and provide the global phase diagram.

PACS. 05.20.-y Classical statistical mechanics – 04.40.-b Self-gravitating systems –
64.60.Cn Order-disorder transformations; statistical mechanics of model systems

1 Introduction

In this article, we study the equilibrium properties of a
system of N classical particles subject to mutual gravita-
tion, assuming that this self-gravitating gas is enclosed in a
finite three-dimensional spherical box and rotates around
its center. The Hamiltonian reads

HN ≡ HN ({ri}, {pi}) =
1

2m

N∑
i=1

p2
i + Φ({ri}) (1)

Φ({ri}) = −Gm2
∑

1≤i<j≤N

1
|ri − rj | (2)

where ri ∈ V ⊂ R
3, pi ∈ R

3 and m > 0 denote, re-
spectively, the position, momentum and mass of the ith
particle, while G is the gravitational constant. (In the fol-
lowing, we set m = 1.) V stands for the (volume of the)
box containing the particles. Notice that the total poten-
tial energy scales as N2. One wants

a. to calculate the spatial distribution of particles at equi-
librium, i.e. the most probable microscopic state;

b. to derive the global phase diagram of the system;
c. to study its thermodynamics (e.g. caloric curves);
d. to describe the phase transitions that eventually take

place.

In general, the physics of systems whose microscopic
constituents interact via long-range potentials1, such as

a e-mail: demartino@hmi.de
1 By which we will mean decaying with the interparticle dis-

tance r more slowly than r−D−ε with ε > 0 in D dimensions
when r → ∞.

(1, 2), is highly non-standard and the analysis of their
equilibrium state represents a considerable theoretical
challenge [1]. At odds with more conventional systems
with short-ranged forces, they are not additive (i.e. they
cannot be divided into macroscopic subsystems with neg-
ligible mutual interaction) and not extensive (i.e. the
densities of thermodynamic functionals are not bounded
in the limit N → ∞). These facts have several impor-
tant consequences. Long-range systems can have negative
specific heat [2–6]; statistical ensembles can be inequiva-
lent [5,7–10]2; they do not possess a proper infinite-volume
limit [11]; and they can attain inhomogeneous configura-
tions (indeed, even their ground state is inhomogeneous,
and it has been suggested that fractal structures may
as well arise [12, 13]). Conventional statistical mechanics
techniques that apply to homogeneous, short-range sys-
tems hence fail for long-range systems. The key theoret-
ical problem here is a very fundamental one: to devise a
mathematical framework that allows the study of phase
transitions and other collective phenomena [14]. (Similar
questions arise in certain short-range systems as well [15].)

Self-gravitating gases are the most prominent exam-
ple of a long-range system and have attracted a great
deal of attention over the years. Most static theories rely
on the microcanonical ensemble, where conserved macro-
scopic observables represent the natural control param-
eters (see [16] for a review). The task in this setting is
that of finding the most probable (entropy-maximizing)

2 In fact, the paper [5] pointed explicitly to the failure of the
canonical ensemble near first-order phase transitions in gen-
eral, and to its non-equivalence with the fundamental micro-
canonical ensemble, which displays a negative heat capacity
there.
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equilibrium configuration of (1, 2) with V finite as a func-
tion of the integrals of (Hamiltonian) motion, the simplest
and physically most relevant being the total energy E and
the total angular momentum L =

∑N
i=1 ri × pi, whose

conservation is related to the invariance of (1) under ro-
tations. Taking the conservation of L into account leads
however to enormous technical difficulties. Most authors
have thus neglected rotation by breaking the rotational
symmetry explicitly from the outset, e.g. by taking a non-
spherical V , and used E as the only control parameter
(see e.g. [17–19] for some recent work). The analysis of
the equilibrium state of self-gravitating gases is hence a
rather well-studied problem without rotation. It turns out
that at high energy (i.e. temperature), where the kinetic
term dominates, the system is most likely found in a ho-
mogeneous cloud (shortly, “gas” state) filling the available
volume. At low energy, instead, where the gravitational
energy dominates, a collapsed configuration is preferred,
where particles form a single dense globular cluster lying
in an almost void background (“single star”). This is the
well-known gravitational collapse transition first described
in [20]. In between these two “phases” (not being homo-
geneous, the single-cluster is not a proper thermodynamic
phase), for a whole range of energies, the specific heat is
negative. In this transition regime the canonical ensemble
fails3.

For a rotating system, the situation is expected to
be substantially more complex. From a qualitative view-
point, the equilibrium density profile will depend on the
ratio between the rotational and gravitational contribu-
tions to the total energy. When the latter dominates, grav-
itational attraction should cause the system to collapse. At
high ratios, instead, when rotation is sufficiently fast (high
angular momentum), more complex distributions should
arise. Dynamical studies based on fluid-mechanics tech-
niques [22–24] suggest that ring-like and disk-like struc-
tures might appear. Ultimately, at sufficiently high rota-
tional energies, two distinct dense clusters (i.e. a “double
star”) should form.

The richness suggested by the fluid-dynamical picture
cannot be recovered in a static equilibrium theory with-
out the inclusion of rotation. Double-cluster configura-
tions can arise in a static framework only from the spon-
taneous breaking of the rotational symmetry of (1), which
should take place when the angular momentum is suffi-
ciently high. Effects connected to rotation should also lead
to the formation of rings and other types of structures.
Despite some attempts [25, 26], however, a detailed static
theory embodying angular momentum is lacking.

The purpose of this work, which builds on [22, 26], is
to include angular momentum in the microcanonical the-
ory. Using a mean-field approximation, we derive an inte-
gral equation for the density profiles corresponding to sta-
tionary points of the microcanonical entropy surface and
solve it numerically as a function of E and L = |L|. The
usual collapse transition is recovered at low angular mo-

3 It has been recently shown that ensemble equivalence is
restored in the “dilute” limit (N, V ) → ∞ with N/V 1/3 fixed,
in which thermodynamic functionals exist [21].

mentum. At high angular momenta, instead, we find that
a spontaneous breakdown of the rotational symmetry oc-
curs at sufficiently low energies. This gives rise to more
complex equilibrium structures, including “double stars”,
rings and disks. We derive the global phase diagram of the
self-gravitating gas in the (E, L) plane. By studying the
Hessian of the microcanonical entropy [9, 27], we charac-
terize three pure phases (where the system is found in a
“gas”, “single star” and “double star” configuration, re-
spectively) and a large mixed phase with negative specific
heat, phase separation and competition between differ-
ent equilibrium density profiles. Finally, we analyze the
thermodynamics of the system, deriving the caloric curves
(temperature versus energy) in the different phases, and
analyze the stability of the stationary distributions.

This paper, which follows [28], is structured as follows.
In Section 2 we expose the microcanonical mean field the-
ory of (1), derive the entropy functional and the station-
arity condition. Section 3 is dedicated to the results. We
report the numerical solution of the main equation, to-
gether with the global phase diagram and a few equilib-
rium configurations. Then we pass to the thermodynamics
of the system, with special emphasis on the rotational-
symmetry-breaking transition, the physics of mixed phase,
and the stability problem. Finally, Section 4 contains our
conclusions and a some remarks about the work presented
here, and a list of open problems.

2 Microcanonical mean-field theory

We consider the system with Hamiltonian as given
in (1, 2), enclosed in a three-dimensional spherical vol-
ume V , to preserve rotational symmetry and ensure con-
servation of the total angular momentum L. At the same
time, the box breaks translational invariance, hence the
total linear momentum is not conserved. The aim of the
microcanonical theory is to find the particles’ density pro-
files ρ(r) satisfying ∫

V

ρ(r)dr = N (3)

that maximize the entropy (k = 1)

SN (E, L) = lnWN (E, L) (4)

WN being the microcanonical “partition sum” (h = 1)

WN (E, L) =

ε

N !

∫
δ(HN − E)δ

(
L −

N∑
i=1

ri × pi

)
Dr Dp. (5)

We used the shorthand notations Dr =
∏N

i=1 dri and
Dp =

∏N
i=1 dpi. ε is a constant that makes WN dimen-

sionless. Integrals over momenta are from −∞ to +∞,
while integrals over {ri} are performed over V N . Clearly,
such equilibrium profiles will depend on E and L.
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We now calculate the microcanonical partition
sum (5). To perform the integrals over momenta, namely
to evaluate

FN ({ri}, K, L) =∫
δ(K − 1

2

N∑
i=1

p2
i ) δ(L −

N∑
i=1

ri × pi) Dp (6)

one can follow Laliena [26] (see also [9]) and use the
Laplace transform of FN in K, that is (�s > 0)

F̃N ({ri}, s, L) =
∫ ∞

0

FN ({ri}, K, L) e−sK dK. (7)

Inserting the integral representation of the δ function and
performing the trivial integral over K one gets

F̃N ({ri}, s, L) =
∫

eiω·L−i
�

i ω.ri×pi− s
2

�
i p2

i Dp Dω

(8)

where Dω = dω/(2π)3. The above integrals are at most
of Gaussian type and can be performed to yield

F̃N ({ri}, s, L) =
(2π)

3N−3
2√

det I

e−
1
2 sLT

I
−1L

s
3N−3

2

(9)

where I ≡ I({ri}) denotes the inertia tensor, with ele-
ments (a, b = 1, 2, 3)

Iab({ri}) =
N∑

i=1

(r2
i δab − ri,ari,b) (10)

and LT
I
−1L =

∑
a,b LaI−1

ab Lb. The inverse Laplace trans-
form of (9) is given by

FN ({ri}, K, L) =
(2π)

3N−3
2

Γ (3N−3
2 )

√
det I

(K − 1
2
LT

I
−1L)

3N−5
2

(11)

for K > 1
2LT

I
−1L and FN ({ri}, K, L) = 0 otherwise.

Hence after integrating out the momenta the microcanon-
ical partition function reads

WN (E, L) =
εA

N !

∫
[E − 1

2LT
I
−1L − Φ({ri})] 3N−5

2√
det I

Dr

(12)

where A = (2π)
3N−3

2 /Γ ((3N − 3)/2). The term in square
brackets in (12) is nothing but the kinetic energy of the
system. Now setting for simplicity K = E − 1

2LT
I
−1L −

Φ({ri}), we remark that the integrand is

eN[ 3
2 logK− 5

2N logK− 1
2N log

√
det I]. (13)

Being interested in the behaviour of the system for large N
(see below), we shall retain just the leading order in N in

the above expression. We are thus left with

WN (E, L) =
εA

N !

∫ [
E − 1

2
LT

I
−1L − Φ({ri})

] 3N
2

Dr

(14)

and it remains to integrate over V N .
To this aim, we write the potential Φ and the com-

ponents of the inertia tensor as functionals of the density
profile ρ as follows:

Φ({ri}) → Φ[ρ] = −G

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′ (15)

Iab({ri}) → Iab[ρ] =
∫

ρ(r)
(
r2δab − rarb

)
dr. (16)

Notice that in this way two- and many-body correlations
are neglected. This allows to recast (14) in the form of the
functional-integral

Wmf
N (E, L)=

εA

N !

∫
[E − 1

2
LT

I
−1L − Φ[ρ]]

3N
2 P [ρ]dρ(r)

(17)

(mf = mean field) where P [ρ] is the probability to observe
a density profile ρ ≡ ρ(r). To estimate the latter, we follow
the logic of Lynden-Bell [22]. We subdivide the spherical
volume V into K identical cells labeled by the positions of
their centers. The idea is to replace the integral over V N

with a sum over the cells. In order to avoid configurations
with high densities where other physical processes (e.g.
nuclear reactions) become more important than gravity,
and cure the short-distance singularity of the Newtonian
potential, we assume that each cell may host up to n0

particles (1 � n0 � N). This condition is essentially
equivalent to considering hard spheres instead of point
particles. P [ρ] is now proportional to the number of ways
in which our N particles can be distributed inside the K
cells with maximal capacity n0. Denoting by n(rk) the
number of particles located inside the kth cell, a simple
combinatorial reasoning leads to

P [ρ] ∝ N !
n(r1)! · · ·n(rK)!

∏
cells k

n0!
(n0 − n(rk))!

= N !
∏

cells k

(
n0

n(rk)

)
(18)

where it is understood that the product involves configu-
rations {n(rk)} such that

∑
k n(rk) = N . Introducing the

relative cell occupancy

c(r) =
n(r)
n0

=
V ρ(r)
Kn0

(19)

and approximating the factorials by means of Stirling’s
formula (assuming n(rk) 
 1 and n0 − n(rk) 
 1), we
get

P [c] ∝ N ! e−
n0K

V

�
[c(r) log c(r)+(1−c(r)) log(1−c(r))]dr

= N ! e−
N
Θ

�
[c(x) log c(x)+(1−c(x)) log(1−c(x))]dx (20)
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where we introduced the dimensionless variable x = r/R
and defined the average coverage

Θ =
NV

n0KR3
=
∫

c(x)dx. (21)

It is simple to check that in terms of c(x) the potential
and the inertia tensor are respectively given by

Φ[c] = − GN2

2RΘ2

∫
c(x)c(x′)
|x − x′| dxdx′ (22)

Iab[c] =
NR2

Θ

∫
c(x)(x2δab − xaxb)dx. (23)

In the following, we shall measure energies in units of GN2

R

and inertia tensor components in units of NR2 so that we
will be dealing with the reduced (dimensionless) quantities

Φ[c] = − 1
2Θ2

∫
c(x)c(x′)
|x − x′| dxdx′ (24)

Iab[c] =
1
Θ

∫
c(x)(x2δab − xaxb)dx. (25)

Plugging (20) into (14), one arrives at the familiar form

Wmf
N (E, L) ∝

∫
eNSmf

N [c] dc(x) (26)

where the “action” Smf
N has the following expression:

Smf
N [c] =

3
2

log
[
E − 1

2
LT

I
−1L − Φ[c]

]
− 1

Θ

∫
[c(x) log c(x) + (1 − c(x)) log(1 − c(x))] dx.

(27)

Clearly, I ≡ I[c]. Smf
N has an obvious physical interpreta-

tion as the sum of the energetic and combinatorial con-
tribution to the entropy, respectively. For large N , the
integral (26) can be computed as usual by the steepest-
descent (Laplace) method. This immediately yields

Wmf
N (E, L) � exp

[
N max

c(x)
Smf

N [c]
]

(28)

hence the “physical” value of the entropy density for large
N is nothing but the maximum of Smf

N over the space of
relative cell occupancies c.

An elementary variation of Smf
N with respect to c, the

constraint on Θ being enforced by a Lagrange multiplier µ
playing the role of a chemical potential, straightforwardly
leads to the stationarity condition

log
c(x)

1 − c(x)
= − β

Θ
U(x) +

1
2
β(ω × x)2 − µ (29)

or, equivalently,

c(x) =
(
1 + e

β
Θ U(x)− 1

2 β(ω×x)2+µ
)−1

(30)

where ω ≡ ω[c] is the angular velocity (related to the total
angular momentum by the relation L = Iω), and β ≡ β[c]
and U(x) are respectively defined as

β =
3/2

[E − 1
2LT

I−1L − Φ[c]]
≡ 3

2K (31)

U(x) = −
∫

c(x′)
|x − x′| dx′ ≡ 2Θ2 δΦ

δc(x)
· (32)

One sees that β is related to the kinetic energy of the
systems, i.e. to the (inverse) temperature. The essence of
the mean-field approximation is clearly expressed by the
fact that

Φ[c] =
1

2Θ2

∫
c(x)U(x)dx. (33)

Equation (29) (or (30)) is our central result. Functions c∗
solving (29) and being entropy maxima in the space of c’s
represent our desired equilibrium distribution of particles.

The correct way to analyze the problem consists in
solving (29) at fixed energy and angular momentum, sub-
sequently calculating intensive quantities (temperature
and angular velocity). For the sake of simplicity and with-
out any loss of generality, we now fix the angular mo-
mentum to lie parallel to the 3-axis, and concentrate on
|L| = L. We remark at this point that Lynden-Bell statis-
tics, which is reminiscent of Fermi-Dirac statistics in real
space (i.e. not in phase space), plays a crucial role. In
fact, once overlapping is ruled out, the Hamiltonian (1)
has a well-defined ground state, with particles collapsed
in a core but without coming too close to each other. If
one used Boltzmann statistics and point particles, instead,
the system would have no ground state, since the potential
energy would be unbounded from below. Antonov catas-
trophe [20] can be seen as a direct consequence of this
fact. For this reason, Lynden-Bell statistics is probably
more appropriate for self-gravitating systems4. The exis-
tence of a ground state ensures that (29) will always have
a solution at fixed E and L. Of course, there may be mul-
tiple viable solutions at the same E and L, each bearing
its entropy. In such a case, the criterion is simply that the
higher the entropy, the more probable the solution.

Upon varying E and L, one can explore different re-
gions of the parameter space and ultimately obtain the
global phase diagram in the whole (E, L) plane. The main
effect one expects from the inclusion of rotation is that,
for sufficiently high angular momenta, upon decreasing the
energy from high values, rotationally-symmetric solutions
(e.g. homogeneous clouds) will become unstable against
fluctuations that break rotational symmetry, and solutions
without rotational symmetry (e.g. “double stars”) will bi-
furcate continuously from them.

The main problem at this point is merely technical.
One can only hope to solve (29) or (30) by numerical in-
tegration. However, the implicit dependence of U(x) and

4 In order to restore a ground state, however, the Thirring
potential [3], which mimics Newtonian gravity, has been used
together with Boltzmann statistics (see e.g. [26]).
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β on c(x) via the three-dimensional integral (32) makes
this a formidable task. Similar considerations hold for ω,
which has to be computed from the relation L = Iω. To
simplify things and in particular to reduce the dimension-
ality of the integrals involved, we pass to spherical coordi-
nates, x = (x, θ, φ), and expand the Newtonian potential
in series of real spherical harmonics (see e.g. [29]):

1
|x − x′| =

∞∑
l=0

l∑
m=−l

4π

2l + 1
(x ∨ x′)l

(x ∧ x′)l+1
Ylm(θ, φ)Ylm(θ′, φ′)

(34)

with x ∨ x′ = min{x, x′} and x ∧ x′ = max{x, x′}. At
the same time, we formally expand also the relative occu-
pancy c:

c(x) =
∞∑

l=0

l∑
m=−l

blm(x)Ylm(θ, φ) (35)

blm(x) is a radial function whose precise form we will have
to derive. Using the above series, together with the com-
pleteness relation for our basis set {Ylm},∫

Ylm(θ, φ)Yl′m′(θ, φ) d cos θ dφ = δll′δmm′ (36)

one can easily show that

U(x) =
∑
l,m

ulm(x)Ylm(θ, φ) (37)

ulm(x) = − 4π

2l + 1

∫
(x ∨ x′)l

(x ∧ x′)l+1
blm(x′)(x′)2dx′. (38)

Multiplying both sides of (30) by Ylm and integrating over
angular variables one obtains for blm the system of integral
equations

blm(x) =
∫

g(x, θ, φ)Ylm(θ, φ) d cos θ dφ (39)

g(x, θ, φ) =
[
1 + e

β
Θ

�
l,m ulm(x)Ylm(θ,φ)− 1

2 βω2x2 sin2 θ+µ
]−1

where l = 0, 1, . . . and m = −l,−l + 1, . . . , l. Notice that
ulm, β and ω depend on blm. This system is completely
equivalent to (30), but at least an iterative solution pro-
cedure is imaginable. After having fixed E and L, starting
from an initial reasonable guess for blm(x), one can com-
pute ulm(x) from (38) (1-dim. integral) (and β from (31)).
Using this, blm(x) can be re-calculated from (39) (2-dim.
integral) to improve the guess, and so until convergence
via e.g. a simple Newton-Raphson method. As the start-
ing point, it is convenient to take a high-energy configu-
ration, where the kinetic contribution is expected to be
much larger than the gravitational one, and a homoge-
neous cloud (“gas”) type of c(x) is very likely to solve (30).
In particular, one can initiate from a totally symmet-
ric configuration where b00(x) = Θ and blm(x) = 0 for
(l, m) �= (0, 0).
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(b) Fixed lmax = 16, variable φ

Fig. 1. Effects of truncation of the series (34) to the term of
order lmax (see text for details). Dashed and continuous lines
represent the truncated potential and the Newtonian potential,
respectively.

Clearly, actual calculations must be performed with a
finite number of harmonics lmax, i.e. the series (34) must
be truncated. The effects of such a truncation are shown
in Figure 1.

One sees the potential felt by one particle due to an-
other one fixed at the position x = 0.4 with φ = 0. In
(a), the first particle moves from x = 0 to x = 1 at fixed
φ = π/8 and the true potential is compared with the trun-
cated one, with maximum number of included harmonics
variable from 2 to 16. The latter case clearly reproduces
the Newtonian force with a good degree of accuracy. How-
ever, the φ-dependence must be considered also. This is
shown in (b), where we fixed lmax = 16 and measured
the potential varying the φ of the second particle, keeping
the first one fixed. It is clearly seen that the truncated
potential works fine sufficiently far from the “probe” par-
ticle, while small deviations occur when the particles are
too close. However this short-distance problem is substan-
tially cured by our choice to deal with non-overlapping
particles. A further hint about what should be the maxi-
mum order of harmonics to be included in the calculation
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Fig. 2. Typical behaviour of the radial function blm(x) for
different l (l even, 2 ≤ l ≤ 14) at fixed m = 2. This particular
plot was obtained for E = −0.18 and L = 0.44.

comes from the study of the behaviour of blm(x) for typ-
ical solutions of (39), an example of which is reported in
Figure 2. One clearly sees that blm dies out as l increases,
and that already for l = 14 it is for all practical purposes
zero.

Hence, we solved (39) taking lmax = 16. We also ex-
cluded odd harmonics. Simple symmetry considerations
suggest that exclusion of l = 1 harmonics fixes the center
of mass in the origin, while absence of higher-order odd
harmonics prevents the formation of asymmetric struc-
tures (e.g. two clusters of different sizes lying at different
distances from the origin). Their effects on the phase dia-
gram will be studied elsewhere [30]. Finally, we measured
energy and angular momentum in units of GN2/R and
(RGN3)1/2, respectively, and took Θ = 0.02 always5. The
results of this analysis are reported in the next section.

3 Thermodynamics

3.1 Phase diagram

We shall discuss here solutions of (39) obtained at fixed E
and L in a slab of the (E, L) plane delimited by the lines
E−L = 1 and E = L. The entropy corresponding to each
solution can be calculated via (27). Pure thermodynamic
phases with one (macroscopic) equilibrium state can be
discerned from phase coexistence regions by studying the
Hessian of S in E and L, i.e.

Hes(E,L)[S] = det

(
∂2

ES ∂L∂ES

∂E∂LS ∂2
LS

)
. (40)

In the microcanonical ensemble pure phases are character-
ized as having Hes(E,L)[S] > 0 (the entropy as a function
of E and L is concave), while phase coexistence regions

5 The Θ-dependence of the results is an important issue.
In fact, when Θ is too large even the usual gravitational col-
lapse transition does not take place because of particles jam-
ming [16].

Fig. 3. Phase diagram in the (E,L)-plane. The dashed lines
E − L = 1 (left) and E = L (right) delimit the region where
the Hessian was calculated. The four markers (×) correspond
to the four situations described in Figure 9.
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0
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0.1636
0.2453
0.3271
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(d) E = −0.42, L = 0.5

Fig. 4. Examples of stationary distributions c(�) occurring
inside our spherical box. Shown are the contour plot and, above
it, the density profile: (a) “single star”, (b) “double star”, (c)
“disk”, (d) “ring”.

have Hes(E,L)[S] < 0 [9, 27] (the entropy has a convex in-
truder). Mixed phases are characterized by negative spe-
cific heat and hence ensemble inequivalence. (The reader is
referred to [9] for an introductory account on microcanon-
ical thermostatistics.) Figure 3 shows the resulting global
phase diagram of the system. In Figure 4 one sees a sam-
ple of stationary distributions, together with the values of
E and L at which they were obtained.
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Results can be summarized as follows. For low angular
momenta:

a. at high energies (the kinetic term dominates), the solu-
tion of (39) is unique and is of the homogeneous cloud
(“gas”) type; one finds that Hes(E,L)[S] > 0 and the
corresponding (pure) phase is labeled as “gas” phase;

b. at low energies, where gravity dominates, the solution
of (39) is unique and of the single-cluster type (“single
star”, e.g. Fig. 4a); correspondingly, one finds a pure
thermodynamic state with Hes(E,L)[S] > 0, which we
call “single-cluster” state;

c. in between these two regimes, one finds a phase co-
existence region with Hes(E,L)[S] < 0 and negative
specific heat, in which different solutions occur at each
point (E, L) (“mixed phase”); here, single-cluster and
gas type of solutions occur.

For slowly rotating systems one thus recovers a scenario
that is similar to the usual gravitational collapse that is
found in theories without angular momentum. For higher
angular momenta (i.e. for a rapidly rotating system), in-
stead:

d. at high energies, the situation gas-type of solutions are
obtained, and the situation is as in a. above;

e. at low energies, the Hessian is positive and solutions
of (39) are of double-cluster type (“double star”, e.g.
Fig. 4b), and the corresponding phase, labeled “double
cluster” is pure;

f. at intermediate energies, multiple solutions are found,
both of double-cluster type and deformed gas-type.
The latter in particular can be disks (e.g. Fig. 4c) or,
if the angular momentum is high enough, rings (e.g.
Fig. 4d). Correspondingly, the Hessian is negative and
we have a phase coexistence region with negative spe-
cific heat.

The system thus turns out to have three pure phases
(“gas”, “single star” and “double star”), separated by a
large mixed phase. The occurrence of double-star-like so-
lutions is the most remarkable effect of rotation. To get an
idea of the coexistence of different solutions in the mixed
phase, in Figure 5 we plot the entropy for three different
solutions (ring, single cluster, double cluster) in a range
of energy at fixed L = 0.5. One sees that the entropy has
a “convex intruder”, corresponding to the mixed phase
and implying negative specific heat. The three solutions
coexist in a whole range of energies, while at low ener-
gies, as evident from the phase diagram, the double-cluster
solution only survives. The point where the rotationally
asymmetric double-cluster solution bifurcates from the ro-
tationally symmetric ring solution corresponds to the be-
ginning of the mixed phase at L = 0.5. In the mixed phase:
double-cluster and (deformed) gas type of configurations
compete at high E and L; single-cluster and gas compete
at low L; finally, single-cluster and double-cluster compete
at intermediate values of L.

The crucial issue of stability (i.e. which of these config-
urations are actually entropy maxima in the space of c’s)
will be dealt with in Section 3.4. For the moment, let it suf-
fice to say that in the mixed phase, rotationally symmetric

Fig. 5. Entropy as a function of energy at fixed L = 0.5 for
three different solutions, as shown. To make the convex in-
truder in the entropy (corresponding to the mixed phase) more
evident, we subtracted the quantity (15/4)E from the entropy.

structures are unstable to perturbations that break ro-
tational symmetry. Hence ring configurations, which also
occur in the mixed phase, are not stable. Deformed gas
configurations (e.g. disks or rings) that occur in the “gas”
phase, e.g. close to the phase boundary, are stable. Be-
fore analyzing the different transitions that take place, we
shall briefly discuss the important issue of negative specific
heat.

3.2 Caloric curves, specific heat

Once the solutions are obtained, the microcanonical en-
tropy surface can be immediately calculated from (27). It
is reported in Figure 6 together with the β-surface, namely

β ≡ β(E, L) =
(

∂S

∂E

)
L=constant

≡ 1
T

(41)

representing the inverse microcanonical temperature as a
function of energy and angular momentum. The central
region in the entropy surface corresponds to the mixed
phase and has Hes(E,L)[S] < 0. Slices of the β-surface at
different L (caloric curves) are shown in Figure 7. One sees
that β is increasing with E for a whole range of energies.
This means that in that range ∂β

∂E > 0, or equivalently
that ∂E

∂T < 0, i.e. that the specific heat is negative. Physi-
cally, if the system is heated (increase of total energy) its
temperature diminishes, and vice versa if it loses energy
its temperature increases. This is well-known to happen in
stars. As they irradiate and release energy, they become
hotter and hotter and contract. Such a behaviour, how-
ever, is not peculiar to self-gravitating systems, but is the
generic signal of a phase separation in the microcanonical
ensemble of finite systems [9,14] and is not recoverable in
the canonical ensemble, where the specific heat is propor-
tional to energy fluctuations, i.e. non-negative definite.
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Fig. 6. (a) Microcanonical entropy S as a function of E and
L. In the central region the Hessian Hes(E,L)[S] is negative,
signaling the separation of multiple phases (mixed phase). In
the three clear regions, the Hessian is positive and pure ther-
modynamic phases (gas, single star, binary star, respectively)
occur. (b) Behaviour of β = ∂ES as a function of E and L.

3.3 Phase transitions, symmetry breaking

We now turn to investigating the phase transitions. The
low-angular-momentum collapse transitions are analogous
to those discussed at length in the literature. A probably
convenient order parameter to describe them is the density
contrast, defined as the center-to-edge ratio of the parti-
cle density. We shall concentrate here on the rotational-
symmetry-breaking transition to double-cluster solutions,
which is the truly novel phenomenon introduced by rota-
tion. A convenient order parameter to detect such a tran-
sition is

D = |I11 − I22| (42)

that is, the difference between 1 and 2 diagonal compo-
nents of the inertia tensor (10). One expects D to be
zero when the solution is rotationally-symmetric, and non-
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Fig. 7. Cross sections of the β-surface (inverse microcanonical
temperature, caloric curves) at different angular momenta.

zero for a solution without rotational symmetry. The rea-
son is physically clear. If L = 0 (i.e. in absence of ro-
tation) the system is necessarily isotropic (I11 = I22 =
I33) and rotational symmetry cannot be broken. When
L �= 0, anisotropies may occur (I33 �= I11, I22) and one
can have either rotationally-homogeneous (I11 = I22) or
rotationally-heterogeneous (I11 �= I22) solutions. The lat-
ter correspond to double clusters. (We remind the reader
that the angular momentum is chosen to lie parallel to
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Fig. 8. Behaviour of the order parameter D = I11 − I22 as a
function of energy E at fixed angular momentum L. At high
L, breaking of rotational symmetry is signaled by a D �= 0.

the 3-axis). In Figure 8 we show explicitly that D ac-
tually behaves as a conventional order parameter for the
rotational-symmetry-breaking transition (and the appear-
ance of double clusters) by plotting it as a function of E
at low and high angular momentum. By comparing Fig-
ure 8b with the phase diagram the reader can notice that
the transition occurs exactly at the phase boundary.

Another view of the same transition is given in Fig-
ure 9. One sees the microcanonical entropy as a function
of I11−I22 at fixed L = 0.5 and different energies. The four
diagrams shown correspond to the four markers displayed
across the gas-double cluster phase boundary in the phase
diagram. The entropy is clearly seen to develop two peaks
at non-zero values of I11 − I22, corresponding to double
clusters systems, with the two stars either aligned on the
1-axis or on the 2-axis, respectively. The fact that S be-
comes flat at the phase transition indicates that the tran-
sition is second-order. The minimum of S, occurring at
I11 = I22, corresponds to another, rotationally-symmetric
solution of (30). In particular, it is a ring. This brings us
to the problem of stability and clarifies further the struc-
ture of the mixed phase: at fixed E and L, the entropy in

Fig. 9. Entropy as a function of I11 − I22 at L = 0.5 and
different values of E. The values of E and L for the four figures
correspond to the four markers (×) shown in Figure 3.

the c space has (at least) two maxima corresponding to
double stars aligned on different axes. These are the only
stable configurations.

3.4 Stability

Usually, the analysis of the (local) stability properties of
the stationary points of the microcanonical entropy (27)
at fixed mass, energy and angular momentum relies on
the study the sign of second variation of the entropy. In
the reference frame of the principal inertia axes, where I

is diagonal, one can calculate such a variation explicitly.
Omitting details of the lengthy calculation, one finds

δ2S =
β

Θ2

∫
δc(x)δc(x′)
|x − x′| dxdx′ − 1

Θ

∫
(δc(x))2

c(x)(1 − c(x))
dx

− 2
3Θ2

[∫
δc(x) log

c(x)
1 − c(x)

dx

]2
− β

3∑
a=1

1
Iaa

[∫
δc(x)ωT

(
δI

(a)

δc(x)

)]2
(43)

with δc(x) a mass-preserving perturbation (
∫

δc(x)dx =
0). I

(a) ≡ I
(a)[c] stands for the ath column of the inertia

tensor I. It is easy to show that for β → 0, that is at
sufficiently high energy where the kinetic term dominates,
homogeneous gas-like stationary configurations are stable
against any perturbation. It suffices to observe that when
β → 0 the above equation reduces to (κ > 0 constant)

δ2S(β → 0) = −κ

∫
(δc(x))2dx < 0 (44)

because c(x) = const. and δc(x) is mass-preserving by
assumption.

In a more general setting, the second variation of the
entropy can be written as the quadratic form

δ2S =
∫

f(x)K(x, x′)f(x′) dx dx′ (45)
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where the kernel K is given by

K(x, x′) = −β
δ2Φ

δc(x)δc(x′)
− 1

Θ

δ(x − x′)
c(x)(1 − c(x′)

− 2β2

3

[
δΦ

δc(x)
− 1

2
ωT δI

δc(x)
ω

] [
δΦ

δc(x′)
− 1

2
ωT δI

δc(x′)
ω

]

− β

2
ωT

[
δI

δc(x′)
I
−1 δI

δc(x)
+

δI

δc(x)
I
−1 δI

δc(x′)

]
ω (46)

and where as before Φ stands for the Newtonian poten-
tial. Stability analysis is then equivalent to studying the
eigenvalue problem for K, namely∫

K(x, x′)f(x′)dx′ = λf(x) (47)

(see e.g. [31]). From a mathematical viewpoint, this task is
extremely sophisticated. We shall therefore limit ourselves
here to discuss the stability of rotationally-symmetric con-
figurations against perturbations that break rotational
symmetry, deferring the reader to a later publication for
a more complete analysis of the stability problem.

From the analysis of the preceding section, and in par-
ticular from Figure 9, it stems that rotationally symmet-
ric configurations become unstable against perturbations
that break rotational symmetry at sufficiently high an-
gular momenta and energies. Two rotationally asymmet-
ric solutions of (39) bifurcate continuously from the rota-
tionally symmetric state. At least for what concerns this
class of perturbations, it is safe to claim that rotationally
symmetric structures are stable up to the phase bound-
ary. Among them, one finds gas-like homogeneous config-
urations, and deformed-gas configurations (i.e. disks and
rings). At the phase boundary, solutions with D = 0 be-
come entropy minima at least along one direction in the
c space, and are no longer stable against rotational sym-
metry breaking. Instead, the only stable configurations in
the mixed phase at high enough angular momentum are
double-cluster like (D �= 0).

A more technical argument that supports this conclu-
sion is the following. Let (see (30))

G[c] =
(
1 + e

β
Θ U(x)− 1

2 β(ω×x)2+µ
)−1

− c(x). (48)

It is easy to show 6 that[
δ2S

δc(x)δc(x′)

]
G[c]=0

= γ

[
δG

δc(x′)

]
G[c]=0

(49)

6 It is sufficient to note that

δS

δc(�)
=

1

Θ
log

(1 − c(�))(c(�) + G[c])

c(�)(1 − c(�) − G[c])
·

Taking the functional derivative of this expression with respect
to c(��) and evaluating it at the stationary point, one finds (49)
with γ = [Θc(�)(1 − c(�))]−1.

with γ > 0, i.e. that the second functional derivative of
the entropy evaluated at the stationary point vanishes to-
gether with the functional derivative of G evaluated at
the same point, and that the two have the same sign.
This implies that the stability analysis can be reduced
to the study of the sign of δG/δc. However, the latter
problem is dealt with when applying the Newton-Raphson
method to solve (30). Starting from high energies, in order
to provoke a rotationally asymmetric solution an appro-
priate external field (in this case, it is related to the order
parameter discussed in the previous subsection) must be
added to G as an external perturbation. A bifurcation
of a rotationally-asymmetric solution implies a change of
sign of δG/δc, meaning that the rotationally symmetric
one has become unstable to that particular perturbation.
Hence, the instability-onset line for perturbations that
break rotational symmetry numerically coincides with the
phase boundary between the “gas” and the “double clus-
ter” phases, where Hes(E,L)[S] = 0, displayed in the phase
diagram.

4 Outlook and final remarks

We have presented an analysis of the equilibrium proper-
ties of a self-gravitating and rotating gas using a micro-
canonical mean-field approach. Our main result concerns
the spontaneous breaking of the rotational symmetry,
which takes place at high angular momentum and gives
rise to non-trivial density profiles, e.g. “double stars”: a
rapidly rotating N -body system kept together by gravi-
tation only at equilibrium spontaneously organizes in two
distinct dense clusters, provided the ratio between rota-
tional and gravitational energy is sufficiently high and the
total energy is not too large. We have derived the global
phase diagram of the model and discussed the related
thermodynamic picture, providing a phenomenological de-
scription of the phase transitions occurring and analyzing
the stability of high-energy rotationally-symmetric equi-
librium states against perturbations that break rotational
symmetry, showing that non-trivial rotationally symmet-
ric solutions such as rings become unstable in the mixed
(phase coexistence) region. To our knowledge, these re-
sults constitute the most complete equilibrium description
of a self-gravitating and rotating system to date. To con-
clude, we would like to put forward some final remarks
and open problems.
i. While it is certainly possible to improve on the results

presented here by increasing the maximum order of
the even harmonics included in the calculation, we do
not expect any major qualitative difference with the
picture we describe here (lmax = 16). The inclusion of
odd harmonics would instead lead to the formation of
asymmetric double clusters, and to a more complete
phase diagram and a full classification of the different
possible equilibrium configurations as a consequence.
This issue will be treated elsewhere [30].

ii. Our results stem from a mean-field analysis, in which
particle-particle correlations are completely neglected.
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iii. We have not studied how our results depend on Θ,
namely on the average density of the system. We men-
tioned that this is an important issue, certainly worth
to be investigated with great care.

iv. A general stability analysis requires, as we said, the
study of the eigenvalue problem for K, equation (46).
The most interesting open question is that of marginal
stability, that is solutions of (47) with zero eigenvalue.
However, the approach we discussed in the last sec-
tion, connecting the stability analysis to the bifurca-
tion analysis, describes correctly the stability of the
different states against perturbations that break rota-
tional symmetry (within the included number of har-
monics).

v. From a physical point of view, it is known that en-
ergy and angular momentum are possibly not the only
conserved quantities to be taken into account if one
wants to recover some observational features of e.g.
galaxies [32].

vi. Of course, we have dealt with equilibrium proper-
ties exclusively, and provided a kind of classification
of the different possible states of the system. This
clearly leaves open many important questions concern-
ing dynamics and relaxation mechanisms, which are
believed to be particularly subtle in self-gravitating
systems [22].

On a more general level, the equilibrium properties of
non-extensive Hamiltonian systems (self-gravitating and
rotating systems being the most important example) can
be well described by Boltzmann’s principle (4). We would
finally like to stress the potentialities of the method pre-
sented here for studying the equilibrium properties of sys-
tems with long-range (see footnote 1) forces. Its basic in-
gredients are: (a) microcanonical statistics and (b) a series
expansion of the potential using a proper basis set. This
same scheme can easily be modified to work with other
types of long-range potentials (e.g. Coulomb or Yukawa).
In the light of this last remark, self-gravitating and ro-
tating systems (for which the use of “corrective” tech-
niques such as the Kac-Uhlenbeck-Hemmer method [33]
is substantially not helpful in clarifying its complex ther-
modynamic structure) should be considered as a funda-
mental testing ground for techniques to analyze the sta-
tistical equilibrium properties of systems with long-range
interactions.
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